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Abstract. Let Sn be the nth symmetric group. Given a set of permuta-
tions Π, we denote by Sn(Π) the set of permutations in Sn which avoid
Π in the sense of pattern avoidance. Consider the generating function
Qn(Π) =

∑
σ FDes σ where the sum is over all σ ∈ Sn(Π) and FDes σ is

the fundamental quasisymmetric function corresponding to the descent
set of σ. Hamaker, Pawlowski, and Sagan introduced Qn(Π) and studied
its properties, in particular, finding criteria for when this quasisymmetric
function is symmetric or even Schur nonnegative for all n ≥ 0. The pur-
pose of this paper is to continue their investigation by answering some
of their questions, proving one of their conjectures, as well as considering
other natural questions about Qn(Π). In particular, we look at Π of small
cardinality, superstandard hooks, partial shuffles, Knuth classes, and a
stability property.

Mathematics Subject Classification. 05E05 (Primary), 05A05 (Secondary).

Keywords. Pattern avoidance, Quasisymmetric function, Shuffle, Schur
function.

1. Introduction

Let Sn denote the symmetric group of all permutations π = π1π2 . . . πn of the
set [n] := {1, 2, . . . , n}. We sometimes insert commas between the elements of π
or enclose them in parentheses to improve readability. We also use the notation
[m,n] = {m,m + 1, . . . , n}. Given any sequence of distinct real numbers σ its
standardization, stdσ, is the permutation obtained by replacing its smallest
element by 1, its next smallest by 2, and so forth. We say that σ ∈ Sn contains
π ∈ Sk as a pattern if there is some subsequence σ′ of σ with stdσ′ = π. If no
such subsequence exists, then σ avoids π. For a set of permutations Π, we let

Sn(Π) = {σ ∈ Sn | σ avoids every π ∈ Π}
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338 J. Bloom, B. E. Sagan

and

Sn(Π) = Sn − Sn(Π) = {σ ∈ Sn | σ contains some π ∈ Π}.

We omit the set braces in Π if it contains only one permutation. For example,
σ = 25143 contains π = 132, because std 254 = 132, but σ ∈ Sn(123), since
σ contains no increasing subsequence with three elements. More information
about pattern avoidance can be found in the book of Bóna [2].

Let x = {x1, x2, . . . } be a countably infinite set of variables. An element
of the formal power series ring R[[x]] is a symmetric function if it is of bounded
degree and invariant under permutations of the variables. Bases for the vector
space of symmetric functions homogeneous of degree n are indexed by integer
partitions λ = (λ1, λ2, . . . , λl) of n which we denote λ � n. We use Greek
letters near the middle of the alphabet to denote partitions and also use the
multiplicity notation iki if a part i of λ is repeated ki times. In particular, we
will be interested in the basis mλ of monomial symmetric functions which is
obtained by symmetrizing the monomial xλ1

1 xλ2
2 . . . xλl

l , as well as the Schur
functions sλ about which we say more below. As an example

m(2,1) = x2
1x2 + x2

2x1 + x2
1x3 + x2

3x1 + x2
2x3 + x2

3x2 + · · · .

For information about symmetric functions as well as related material con-
cerning Young tableaux and the Robinson–Schensted correspondence (which
we use throughout), the reader can consult the texts of Sagan [9] or Stanley
[11].

An element of R[[x]] is quasisymmetric if it is invariant under bijections
between subsets of the variables that preserve the order of the subscripts. The
algebra of quasisymmetric functions, QSym, are those power series which are
quasisymmetric and of bounded degree. They were first explicitly introduced
by Gessel [5] and have since found many applications; see [10] or [11]. Bases
for the vector space of quasisymmetric functions of degree n are indexed by
compositions (ordered partitions) α = (α1, α2, . . . , αl) of n and we use the
notation α |= n as well as multiplicity notation. To distinguish compositions
from partitions, we use letters from the beginning of the Greek alphabet for
compositions. The monomial quasisymmetric Mα function is formed by qua-
sisymmetrizing the monomial xα1

1 xα2
2 . . . xαl

l ; for example

M(1,2) = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · · .

Note that

mλ =
∑

α

Mα, (1)

where the sum is over all compositions α obtained by rearranging the parts of
λ.

There is another important basis for the quasisymmetric functions. To
define it, note that there is a bijection between compositions α |= n and subsets
S ⊆ [n − 1] given by

(α1, α2, . . . , αl) �→ {α1, α1 + α2, . . . , α1 + α2 + · · · + α�−1}. (2)
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Revisiting Pattern Avoidance and Quasisymmetric Functions 339

The fundamental quasisymmetric function associated with S ⊆ [n − 1] is

FS =
∑

xi1xi2 . . . xin ,

where the sum is over indices satisfying i1 ≤ i2 ≤ · · · ≤ in and ij < ij+1 if
j ∈ S. To illustrate, if S = {1} ⊆ [2], then

FS = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · · + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · · .

We also denote FS by Fα if S corresponds to α under the bijection above. The
expansion of a fundamental quasisymmetric function in terms of monomials
is

Fα =
∑

β≤α

Mβ , (3)

where β ≤ α means that β is a refinement of α. In the example above, we see
that F(1,2) = M(1,2) + M(13).

We study certain quasisymmetric functions related to pattern avoidance
which were introduced by Hamaker, Pawlowski, and Sagan [6]. Related work
has been done by Adin and Roichman [1] and by Elizalde and Roichman [3,4].
A permutation σ ∈ Sn has descent set

Des σ = {i | σi > σi+1} ⊆ [n − 1].

Given a set of permutations Π, define

Qn(Π) =
∑

σ∈Sn(Π)

FDes σ.

In [6], they found many interesting Π, such that for all n, the function Qn(Π)
is symmetric. In that case, they were also often able to show that Qn(π) is
Schur nonnegative in that the coefficients of its expansion in the Schur basis
are nonnegative. Our main motivation for the present work is to answer some
of the questions asked by Hamaker–Pawlowski-Sagan and to prove one of their
conjectures.

Our work will be simplified by using certain symmetries of permutations.
A permutation π = π1π2 . . . πk has reversal πr = πk . . . π2π1 and complement
πc = k + 1 − π1, k + 1 − π2, . . . , k + 1 − πk. We apply these operations to sets
of permutations by applying them to each individual element of the set. Also,
given a partition λ = (λ1, . . . , λl), we use the notation λt = (λt

1, . . . , λ
t
m) for

its transpose given by reflecting the Young diagram for λ across the diagonal.
We write our Young diagrams in English notation with the first row on the
top. We also give coordinates to elements of a Young diagram as in a matrix.

Proposition 1.1. [6] If Qn(Π) is symmetric, then so are Qn(Πr) and Qn(Πc).
In particular, if Qn(Π) =

∑
λ cλsλ for certain coefficients cλ, then

Qn(Πr) = Qn(Πc) =
∑

λ

cλsλt .

�
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340 J. Bloom, B. E. Sagan

We make heavy use of the following result of Gessel [5]: Suppose that P is
a standard Young tableau (SYT) of shape λ � n; that is, a filling of the Young
diagram of λ with the numbers in [n] so that rows and columns increase. We
indicate that P has shape λ by writing shP = λ. Let

SYT(λ) = {P | sh P = λ}
and fλ = #SYT(λ) where the hash sign denotes cardinality. The descent set
of P is

Des P = {i | i + 1 appears in a lower row than i in P}.

This notion permits one to expand the Schur functions in terms of the funda-
mental quasisymmetric functions.

Theorem 1.2. [5] For any λ, we have

sλ =
∑

Q∈SYT(λ)

FDes Q.

�

Certain properties of the Robinson–Schensted correspondence will be cru-
cial. We only review the ones which we need here and the interested reader
can find more detail in [9,11]. The Robinson–Schensted map is a bijection

RS : Sn →
⋃

λ�n

SYT(λ) × SYT(λ).

If RS(π) = (P,Q), then we write P = P (π) and Q = Q(π) and call P and Q the
P -tableau and Q-tableau of π, respectively. We need the following properties
of the map RS.

Theorem 1.3. Suppose that RS(π) = (P,Q).

(a) Des π = Des Q.
(b) If sh P = λ, then λ1 is the length of a longest increasing subsequence of

π.
(c) P (πr) = (P (π))t.
(d) RS(π−1) = (Q,P ). �

Call two permutations π, σ Knuth equivalent if P (π) = P (σ). Given an
SYT denote by K(P ) the Knuth equivalence class of all permutations with
P (π) = P . Similarly, if λ is a partition, we let

K(λ) = {π | sh P (π) = λ}.

The following result follows easily from Theorems 1.2 and 1.3(a).

Corollary 1.4. [6] Suppose that P ∈ SYT(λ).

(a)
∑

π∈K(P ) FDes π = sλ.
(b)

∑
π∈K(λ) FDes π = fλsλ. �

Author's personal copy



Revisiting Pattern Avoidance and Quasisymmetric Functions 341

The rest of this paper is structured as follows. In the next section, we
determine which Π of cardinality #Π ≤ 2 have Qn(Π) symmetric for all n.
In Section 3, we answer a question of Hamaker–Pawlowski–Sagan concerning
the coefficients in the Schur expansion of Qn(K(P )) where K(P ) is the Knuth
class of a superstandard hook tableau P . Section 4 is devoted to proving a
conjecture in [6] about Qn(Π) where Π is a certain variant of a shuffle set
called a partial shuffle. In Section 5, we study Π, such that Sn(Π) is a union
of Knuth classes for all n (which implies that Qn(Π) is Schur nonnegative). In
doing so, we provide a simpler proof of a theorem in [6] when Π = K(P ) for a
single SYT P , and also answer a question asked by the authors about the case
when Π is a union of two Knuth classes. We end with a section about stability
results.

2. Pattern Sets of Small Size

In this section, we answer the question: for which Π ⊆ Sk with #Π = 1 or
2 is Qn(Π) symmetric for all n? It turns out that this occurs exactly when
Π ⊆ {ιk, δk} where ιk and δk are the increasing and decreasing permutations
in Sk, respectively. We need the following result which follows easily from
Theorem 1.3 (b) and (c) and Corollary 1.4 (b).

Lemma 2.1. [6] For n ≥ 0, we have

Qn(∅) =
∑

λ

fλsλ,

Qn(ιk) =
∑

λ1<k

fλsλ,

Qn(δk) =
∑

λt
1<k

fλsλ,

where all three sums are over λ � n together with any additional restriction
noted in the summation. �

We now turn to the case #Π = 1. We need the following fact about
fundamental quasisymmetric functions. Although it is quite simple, we have
been unable to find a reference in the literature.

Lemma 2.2. If α |= k, then Fα is symmetric if and only if α = (k) or α = 1k.

Proof. The reverse implication is trivial. We prove the “only if” statement by
contradiction, assuming that there is a third α with Fα symmetric. But then,
there are two compositions β, γ which are both rearrangements of the partition
λ = (2, 1k−2), such that β refines α, but γ does not. Considering the expansion
of Fα into monomial quasisymmetric functions in (3), we see from (1) that we
have some but not all the terms which would be needed to give the monomial
symmetric function mλ. This contradiction completes the proof. �

It is now a short step to the first main result of this section.

Author's personal copy



342 J. Bloom, B. E. Sagan

Theorem 2.3. Suppose #Π = 1. Then, Qn(Π) is symmetric for all n if and
only if Π = {ιk} or Π = {δk} for some k.

Proof. The reverse implication follows from Lemma 2.1. For the other direc-
tion, suppose, towards a contradiction, that Qn(π) is symmetric for all n where
π ∈ Sk, but π 
= ιk, δk. Since Sk(π) = Sk − {π}, we have

Qk(π) = Qk(∅) − FDes π.

From our assumption and Lemma 2.1, we have Qk(π) and Qk(∅) are sym-
metric, so the same must be true of FDes π where Des π ⊆ [k − 1]. However,
π 
= ιk, δk, so we must have Des π 
= ∅, [k − 1]. Translating this statement
from subsets of [k − 1] to compositions of k using (2) gives a contradiction to
Lemma 2.2. �

We now consider the case #Π = 2. If Π = {ιk, δl}, then, by Theorem 1.3
(b) and (c), Qn(Π) is the union of Knuth classes corresponding to all SYT(λ)
where λ1 < k and λt

1 < l. Applying Corollary 1.4 (b), we get the following
result which we record for future reference.

Lemma 2.4. If Π = {ιk, δl} for any k, l ≥ 1, then Qn(Π) is symmetric and
Schur nonnegative for all n.

We now prove an analogue of Lemma 2.2 for sums of two fundamental
quasisymmetrics. In it, we make use of the lattice Ck of compositions of k
ordered by refinement. Therefore, α ≤ β and other notations refer to this
partial order. We also sometimes use the notation M(α) for Mα and eliminate
the commas in α for readability.

Lemma 2.5. Suppose that k ≥ 5 and α, β |= k are distinct partitions. Then,
Fα + Fβ is symmetric if and only if {α, β} = {(k), (1k)}.
Proof. The reverse implication is easy to see. Therefore, we concentrate on
proving the forward direction.

Label the atoms of Ck as αi = 1i−121k−i−1 for 1 ≤ i < k. Expanding Fα+
Fβ in terms of monomial quasisymmetrics, we see that

∑
M(αi) +

∑
M(αj)

is symmetric where the two sums are over the sets defined by

A = {αi | αi ≤ α} and B = {αj | αj ≤ β}.

Symmetry and the fact that {α, β} 
= {(k), (1k)} imply that A and B are
disjoint, nonempty, and A � B = {α1, . . . , αk−1}.

Without loss of generality, we can assume that α1 ∈ A. Since B 
= ∅,
there is an index i, such that αi ∈ A and αi+1 ∈ B. Let i be the minimum
such index. If i ≥ 2, then α1, α2 ∈ A and so M(α1 ∨ α2) = M(31k−3) is
in the expansion of Fα. However, αi ∈ A and αi+1 ∈ B which implies that
M(αi ∨αi+1) = M(1i−131k−i−2) is not in the expansion of Fα +Fβ . It follows
that this expansion is not symmetric which is a contradiction. Therefore, it
must be that i = 1.

We have shown that α1 ∈ A implies α2 ∈ B. Similarly, α2 ∈ B implies
α3 ∈ A, and so forth. It follows that

A = {α1, α3, . . . } and B = {α2, α4, . . . }.
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Revisiting Pattern Avoidance and Quasisymmetric Functions 343

Since k ≥ 5, we have #A ≥ 2 and #B ≥ 2. Thus, M(α1 ∨ α3) = M(221k−4)
is in the expansion of Fα. However, M(α1 ∨ α4) = M(2121k−5) is not in the
expansion of Fα + Fβ . This final contradiction finishes the proof. �

We can now prove the second main result of this section.

Theorem 2.6. Suppose k ≥ 4 and Π ⊆ Sk with #Π = 2. Then, Qn(Π) is
symmetric for all n if and only if Π = {ιk, δk}.
Proof. The backward direction follows from Lemma 2.4. For the forward direc-
tion, it is easy to check by computer that this is true for k = 4, so we assume
that k ≥ 5. There are now two cases depending on |Π ∩ {ιk, δk}|.

First, consider Π = {π, δk}, where π ∈ Sk − {ιk}. The other possibility
when |Π ∩ {ιk, δk}| = 1 is handled similarly. If Qk(Π) is symmetric, then so is
FDes π + F[k−1] = FDes π + s1k . It follows that FDes π is symmetric. But then,
π ∈ {ιk, δk} by Theorem 2.3, which contradicts our choice of Π.

Now, assume that Π = {π, σ} with Π ∩ {ιk, δk} = ∅. As in the previous
paragraph, the fact that Qk(Π) is symmetric implies that so is Fα + Fβ where
α = Des π and β = Desσ. This gives a contradiction to Lemma 2.5. �

We note that this result is not true when k = 3. For example, Π =
{213, 231} has Qn(Π) symmetric and Schur nonnegative for all n. We also
conjecture, based on computer experiments, that things change when #Π ≥ 3.

Conjecture 2.7. Given p ≥ 3, there is a K which is a function of p, such that
if #Π = p and Π ⊆ Sk for k ≥ K, then Qn(Π) cannot be symmetric for all n.

3. Superstandard Hooks

An SYT P of shape λ is called row superstandard if it is obtained by filling
the first row with the integers in [1, λ1], then the second row with the entries
[λ1 +1, λ1 +λ2], and so on. Column superstandard is defined analogously using
the columns. Superstandard means either row or column superstandard. A
superstandard hook is a superstandard tableau of hook shape. For us, these
tableaux are interesting because of the following result.

Theorem 3.1. [6] For any SYT P , we have Sn(K(P )) is a union of Knuth
classes for all n if and only if P is a superstandard hook. �

We now answer Question 5.13 from [6]. Specifically, we know from the
previous result and Corollary 1.4 (a) that for a superstandard hook P , the gen-
erating function Qn(K(P )) is Schur nonnegative. So what do the coefficients
in its Schur expansion count? By Proposition 1.1, it suffices to consider the
row superstandard case. Given positive integers r, s and some SYT P , then an
(r, s)-ascending sequence in P is a sequence of its elements

p1,r = pi1,j1 < pi2,j2 < · · · < pis,js , (4)

such that 1 = i1 < i2 < · · · < is. We let

Avn(r, s) = {P ∈ SYT(n) | P does not contain an (r, s)-ascending sequence}.
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344 J. Bloom, B. E. Sagan

Theorem 3.2. Let R be the row superstandard tableau of shape (r, 1s−1). Then

Qn(K(R)) =
∑

λ

cλsλ,

where

cλ = the number of P ∈ Avn(r, s) of shape λ.

Proof. By Corollary 1.4(a) and Theorem 3.1, it suffices to show that P ∈
SYT(n) contains an (r, s)-ascending sequence if and only if some permutation
with insertion tableau P contains an element of K(R) as a pattern. Note that

K(R) = [(1, 2, . . . , r − 1)� (r + s − 1, r + s − 2, . . . , r + 1)] · r,

where � denotes shuffle and the multiplication sign denotes concatenation.
First consider the forward direction and suppose P contains an (r, s)-

ascending sequence as in (4). Consider the row word ρ of P , i.e., the word
obtained from P by concatenating the rows of P from bottom to top, reading
each row left to right. Because of the restriction on the first coordinates of
the subscripts, we see that pis,js > · · · > pi1,j1 = p1,r is a subsequence of ρ.
Furthermore, the elements p1,1 < p1,2 < · · · < p1,r−1 come in that order before
p1,r in ρ. The union of these two subsequences standardizes to an element of
K(R) which is what we wished to prove.

For the converse, consider the column word κ of P . Therefore, κ =
C1C2 . . . Ct where Cj is the jth column of P read in decreasing order. Let
π be a copy of some element of K(R) in κ. Therefore, π contains a decreasing
subsequence of length s, say pi1,j1 > · · · > pis,js . We claim that ik > ik+1 for
all k. For assume to the contrary that ik ≤ ik+1. But also jk ≤ jk+1 by the
column ordering in P . This forces pik,jk < pik+1,jk+1 which is a contradiction.
Furthermore, pis,js must be the end of an increasing subsequence of π of length
r. Since κ lists columns in decreasing order, this forces js ≥ r. Since p1,r is
the minimum element in the columns weakly right of column r, we have the
sequence

p1,r < pis−1,js−1 < · · · < pi1,j1 ,

which is the desired (r, s)-ascending sequence in P . �

4. Partial Shuffles

The goal of this section is to prove a generalization of Conjecture 4.2 in [6].
We first establish some definitions. For any a ≤ n, define the corresponding
partial shuffle as

(1, 2, . . . , â, . . . , n)� (a) = [(1, 2, . . . , â, . . . , n)� (a)] − ιn,

where � denotes the standard shuffle and ̂ denotes deletion of the indicated
element. For example, we have

(1, 2, 3, 4̂, 5, 6)� (4) = {412356, 142356, 124356, 123546, 123564}.
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We also define the set of fattened hooks to be

Hn,k = {λ � n | λ2 < k},

As an example, if k = 1 then Hn,1 consists of the single partition (n). Also,
Hn,2 is the set of ordinary hooks. We also set

Π(a, b) := (1, . . . , â, . . . , a + b)� (a),

where a + b ≥ 2 with a ≥ 1 and b ≥ 0. We now prove the following theorem
where the case when b = 1 was first stated in [6] as Conjecture 4.2.

Theorem 4.1. Fix nonnegative integers a, b. Then

Qn(Π(a + 2, b)) =
∑

λ∈Hn,a+b+1

fλsλ,

where λ is λ with λ1 replaced by min{λ1, a + b}.
The remainder of this section is devoted to proving this theorem. The

main idea behind this proof is to establish descent-preserving bijections
between “consecutive” sets Π(a + 2, b) and Π(a + 1, b + 1). Doing this then
reduces the problem to proving that

Qn(Π(a + b + 2, 0))

has the desired Schur function decomposition. To construct our bijections, we
begin with some definitions and lemmas. Using these bijections, we end this
section with a detailed proof of Theorem 4.1.

For any σ ∈ Sn and a > 0, we say that j is an a-start or an a-end in
σ provided that there exists an occurrence σi1 . . . σia of ιa in σ where i1 = j
or ia = j, respectively. We further say j is a maximal a-start provided that
j is an a-start but not an (a + 1)-start. Likewise, we say that j is a minimal
a-end provided that j is an a-end but not an (a + 1)-end. To deal with the
border cases that will arise, we define n + 1 to be a maximal 0-start and set
σn+1 := n + 1. Similarly, we define 0 to be a minimal 0-end and set σ0 := 0.
Representing permutations σ via their permutation diagrams, i.e., the points
(i, σi) in the first quadrant of the plane, we see that j is a maximal a-start if
and only if j is an a-start and there is no a-start i, such that σi is northeast of
σj . We make use of this description going forward. Last, for a, b ≥ 0 define m to
be an (a, b)-middle in σ provided that there exists an occurrence σi1 . . . σia+b+1

of ιa+b+1 in σ where ia+1 = m.
In our first lemma, we record a few basic observations regarding these

definitions.

Lemma 4.2. Let σ ∈ Sn and fix a, b ≥ 0. Let s1 < s2 < · · · < sr and e1 <
e2 < · · · < et be the sequences of maximal b-starts and minimal a-ends in σ,
respectively. We have the following properties.

(i) The sequences σs1 , σs2 , . . . and σe1 , σe2 , . . . are decreasing subsequences in
σ.
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346 J. Bloom, B. E. Sagan

(ii) For every (a, b)-middle m, there exists some i, so that

si−1 < m < si and σm < σsi
, (5)

and some j, so that

ej < m < ej+1 and σej
< σm, (6)

where we take s0 = 0 and et+1 = n + 1.

Proof. The proof of (i) follows immediately from the definitions. To prove (5),
observe that any (a, b)-middle m is, in particular, a (b+1)-start. As such, there
is some i, so that σsi

is northeast of σm. Moreover, by (i), it follows that if we
choose si to be the smallest such index > m we arrive at our claim. A similar
proof justifying (6) is left to the reader. �

For our next lemma, we define an increasing interval in a permutation σ
to be an occurrence σi1 , . . . , σik of ιk, such that {σi1 , . . . , σik} = [σi1 , σik ].

Lemma 4.3. Fix a + b ≥ 1 with a, b ≥ 0 and some permutation σ. Let s1 <
s2 < · · · < sr and e1 < e2 < · · · < et be the sequences of maximal b-starts and
minimal a-ends, respectively, in σ.

(i) We have σ ∈ Sn(Π(a + 2, b)) if and only if for each 1 ≤ i ≤ r the (a, b)-
middles between si−1 and si correspond to an increasing interval with
largest value σsi

− 1.
(ii) We have σ ∈ Sn(Π(a + 1, b + 1)) if and only if for each 1 ≤ i ≤ t the

(a, b)-middles between ei and ei+1 correspond to an increasing interval
with smallest value σei

+ 1.

Proof. To prove the forward direction of (i), assume σ ∈ Sn(Π(a + 2, b))
and consider some (a, b)-middle, so that si−1 < m < si. By (5), we know
σm < σsi

. It now suffices to prove that for any index y with σm < σy < σsi

we have m < y < si, since, in this case, y is clearly an (a, b)-middle. The
desired implication follows, because, otherwise, we obtain an occurrence of
some forbidden pattern.

To establish the reverse direction of our first claim, consider some occur-
rence

σx1 . . . σxa+1σxa+2 . . . σxa+b+1

of ιa+b+1 in σ. It suffices to show that for any index y, such that σxa+1 < σy <
σxa+2 we have xa+1 < y < xa+2. To see this, first observe that xa+1 is an (a, b)-
middle. By (5), this means that there exists some i, so that si−1 < xa+1 < si

with σxa+1 < σsi
. Also noting that xa+2 is a b-start, it follows that there is

some j, so that σsj
is (weakly) northeast of σxa+2 . Hence, by our choice of i,

we must have si ≤ sj and

σxa+1 < σxa+2 ≤ σsj
≤ σsi

,

where the last inequality follows from the last observation and (i) of
Lemma 4.2. It now follows from our assumption about the (a, b)-middles form-
ing an increasing interval that xa+1 < y < xa+2 as desired.

The proof of our second claim is analogous and is left to the reader. �
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Using this lemma, we prove the existence of our descent-preserving bijec-
tions. Let us first consider a motivating example. Let a + b + 2 = 7 with a = 3
and b = 2, so that Π(a + 2, b) = 123467 � 5. Now, consider the following
Π(a + 2, b) avoiding permutation

2 11 6 4 10 3 13 5 14 1 15 16 7 8 9 18 17 12,

where the underlined entries correspond to minimal 3-ends, the overlined
entries correspond to maximal 2-starts, and the circled entries correspond to
(a, b)-middles. As proved in Lemma 4.3, note that the circled entries to the
left of 16 form an increasing interval, as do the circled entries between 16 and
9. To transform this permutation into one avoiding Π(a + 1, b + 1), we simply
“shift down” the circled entries according to which 3-ends (underlined entries)
they are between. Using fractional values to (temporarily) avoid adjusting all
values simultaneously, we get

2 11 6 4 10 3 10.1 5 5.1 1 5.2 16 5.3 5.4 9 18 17 12,

and finally, after standardizing, we arrive at

2 14 10 4 12 3 13 5 6 1 7 16 8 9 11 18 17 15,

which is Π(a + 1, b + 1)-avoiding.

Lemma 4.4. Fix nonnegative integers a, b, so that a + b ≥ 1. There exists a
descent-preserving bijection

Φ : Sn(Π(a + 2, b)) → Sn(Π(a + 1, b + 1))

Proof. To define our function Φ, fix some σ ∈ Sn(Π(a + 2, b)), and let s1 <
s2 < · · · and e1 < e2 < · · · be the sequence of maximal b-starts and minimal
a-ends, respectively, in σ. Now, let m1 < m2 < · · · be the sequence of (a, b)-
middles.

It follows from Lemma 4.3 that values of σ indexed by (a, b)-middles
between si−1 and si form an increasing sequence whose largest value is σsi

−1.
Now, let σ′ be the result of replacing these “middle” entries in σ with place-
holding zeros. As no value deleted from σ is northeast of some sj , the maximal
b-starts of σ′ are the same as those in σ.

Construct σ′′ from σ′ by replacing the k place-holding zeros between ei

and ei+1 with the increasing sequence

σei
+

1
k + 1

, σei
+

2
k + 1

, . . . , σei
+

k

k + 1
.

Finally, let Φ(σ) be the standardization of σ′′. A straightforward check similar
to what was done in the previous paragraph shows that the maximal b-starts,
minimal a-ends, and (a, b)-middles are invariant under this construction. As
such, it follows from Lemma 4.3 that Φ(σ) is Π(a + 1, b + 1)-avoiding and
hence well defined. As this construction is clearly invertible, it follows that
this function is also bijective.
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It remains to show that Φ is descent preserving. To see this, consider
some (a, b)-middle m with

ej < m < ej+1 and σej
< σm.

First, observe that σm+1 cannot be between σej
and σm as otherwise m + 1

is an (a, b)-middle which combined with the placement of σm would create
an occurrence of some pattern in Π(a + 2, b). Thus, m ∈ Des σ if and only if
m ∈ Des Φ(σ). Similarly, one can check that the presence of m−1 in the descent
set is preserved in passing from σ to Φ(σ). Since only (a, b)-middles move when
applying Φ, this completes the proof that the map is descent preserving. �

Proof of Theorem 4.1. By Lemma 4.3, it suffices to prove that Qn(Π(a + b +
2, 0)) has the desired Schur decomposition. Observe that Π(a + b + 2, 0) =
K(R) where R is the row superstandard tableau of shape (a + b + 1, 1). By
Theorem 3.2, we then see that

Qn(Π(a + b + 2, 0)) =
∑

λ

cλsλ,

where cλ is the number of P ∈ Avn(a + b + 1, 2) of shape λ. Now,
from the definitions, we have P ∈ Avn(a + b + 1, 2) if and only if
{p1,a+b+1, p1,a+b+2, . . . , p1,n} = [p1,a+b+1, n]. It follows that λ2 < a + b + 1,
since we would have to have p2,a+b+1 > p1,a+b+1 and all the elements greater
than p1,a+b+1 are to its right. Thus, λ ∈ Hn,a+b+1. Furthermore, there is a
bijection between such tableaux and those of shape λ obtained by removing
the elements [p1,a+b+1, n]. Thus, cλ = fλ finishing the proof. �

5. Pattern-Knuth Closed Classes

We say that Π ⊆ S is pattern-Knuth closed if Sk(Π) is a union of Knuth
classes for all k. Equivalently, Sk(Π) is a union of Knuth classes for all k. Note
that if Π is pattern-Knuth closed, then Qk(Π) is Schur nonnegative for all k.
This concept was introduced and studied by Hamaker, Pawloski, and Sagan
[6]. In this section we continue the investigation of this topic and, in doing so,
answer one of their questions.

If Π ⊆ Sk is pattern-Knuth closed, then, in particular, Π must be a
union of Knuth classes. In [6], the authors characterized which Π = K(S)
for a single SYT S are pattern-Knuth closed. It turns out that this happens
precisely when S is a superstandard hook. In Theorem 5.11 below, we give
an augmented version of their result and give a more conceptual proof. Our
techniques are strong enough that in Theorem 5.13, we resolve the case where
Π is a union of two Knuth classes which was left as Question 5.14 in [6]. We
also discuss why these results do not seem to generalize to unions of more than
two Knuth classes.

We first recall another useful characterization of a Knuth class. Consider
positive integers a < b < c. A Knuth move in a permutation π consists of
replacing a factor (adjacent subsequence) of the form acb with one of the form
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cab, or vice-versa. One is also permitted to exchange factors of the form bac
and bca.

Theorem 5.1. [7] Two permutations are Knuth equivalent if and only if one
can be transformed into the other by a series of Knuth moves. �

We begin with an elementary property of pattern-Knuth closed sets.

Proposition 5.2. If Π and Π′ are pattern-Knuth closed, then so is Π ∪ Π′.

Proof. Observe that Sn(Π ∪ Π′) = Sn(Π) ∩ Sn(Π′). As both Sn(Π) and
Sn(Π′) are unions of Knuth classes, it follows that there intersection must be
as well. In other words, Π ∪ Π′ is pattern-Knuth closed. �

Let ξ and ζ are (not necessarily disjoint) subsequences of a permutation
σ. Define ξ ∪ ζ to be the subsequence of σ whose elements consist of those of
ξ together with those of ζ. We write ξ � ζ if ξ and ζ are disjoint. The shape of
a permutation, shσ, is the shape of its output tableaux under the Robinson–
Schensted map. Finally, let lis σ (respectively, lds σ) stand for the length of a
longest increasing (respectively, decreasing) subsequence of σ.

Lemma 5.3. Suppose that σ = ι � δ where ι is increasing of length a and δ is
decreasing of length b. Then sh σ is one of the following:

(a, 1b), (a + 1, 1b−1), (a, 2, 1b−2).

Proof. Because of the hypothesis, we have lis σ = a or a + 1 and ldsσ = b or
b + 1. We have three cases.

If lds σ = b + 1, then the first column of shσ is of length b + 1 by
Theorem 1.3 (b) and (c). Furthermore, the length of the first row of shσ is
at least a. However, #σ = a + b, so we must have sh σ = (a, 1b). Similarly, if
lis σ = a + 1, then this forces shσ = (a + 1, 1b−1). Finally, assume ldsσ = b
and lis σ = a. Therefore, the first column of shσ has b elements and the first
row has a, giving a total of a + b − 1 entries. Thus, the remaining entry must
be in the (2, 2) box. �

We point out that the third case of this lemma can occur. In fact, the
smallest example where this case is needed is when σ = 65127843. Here, σ
contains a unique increasing sequence of length a = 4, namely 1278, and a
unique decreasing sequence of length b = 4, namely 6543, and shσ = (4, 2, 1, 1).

For any partition μ, recall that

K(μ) =
⋃

T∈SYT(μ)

K(T )

and define

Sn(μ) = {λ � n | λ 
⊇ μ}.

Theorem 5.4. Let μ = (a, 1b) and τ = (a, 2, 1b−1). Then, Π = K(μ) ∪ K(τ) is
pattern-Knuth closed and

Qn(Π) =
∑

λ∈Sn(μ)

fλsλ.
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Proof. To prove both statements, it suffices to show that for any permutation
σ, we have σ ∈ Sn(Π) if and only if shσ ⊇ (a, 1b). For the forward direction,
let κ be a copy of an element of either K(μ) or K(τ) in σ. Then, κ, and hence,
σ contains an increasing subsequence of length a and a decreasing subsequence
of length b + 1. It follows that shσ ⊇ (a, 1b) as desired.

For the reverse, the assumption on shσ means that σ has a subsequence
κ = ι ∪ δ where ι is increasing of length a and δ is decreasing of length b + 1.
If the union is disjoint, then by the previous lemma, we must have shκ is one
of (a, 1b+1), (a + 1, 1b), or (a, 2, 1b−1). In the third case, we are done, since
σ contains an element of K(τ). If we are in one of the first two cases, then
one can remove an element of δ or ι, respectively, to show that σ contains an
element of K(μ). If the union is not disjoint, then ι and δ must overlap in
precisely one element and an argument as in the proof of the lemma shows
that shκ = (1a, b), finishing the proof. �

We now begin our characterization of certain pattern-Knuth closed sets
with some critical definitions. We call the descents of π−1 the i-descents of π
and denote the set of all i-descents by iDes(π). (We note that some authors
define this idea as left descents.) An equivalent definition of i-descents is the
following: a ∈ iDes(π) if and only if a + 1 is to the left of a in π. We say that
a set of permutations Π ⊆ Sn is i-descent consistent provided that iDes(π) =
iDes(σ) for all π, σ ∈ Π and write iDes(Π) for this common set of i-descents.
Equivalently, Π ⊆ Sn is i-descent consistent if and only if Π ⊆ D−1

J for some
J ⊆ [n − 1], where

DJ = {π ∈ Sn | Des(π) = J}, (7)

and we take the inverse of a set by taking the inverse of each of its elements.
Recall that for any S ∈ SYT(n), we have iDes(σ) = Des(S) for each σ ∈ K(S)
by Theorem 1.3 (a) and (d). Furthermore, for any J ⊆ [n − 1]

⋃

S

K(S) = D−1
J ,

where the union is over all S ∈ SYT(n) where Des(S) = J . Therefore, Knuth
classes give a natural example of i-descent consistent sets. The next lemma will
be important in our characterization of the pattern-Knuth closed sets which
consist of a single Knuth class.

Lemma 5.5. Fix S ∈ SYT(n). Then, the following are equivalent:
(i) K(S) = D−1

J for some J ⊆ [n − 1],
(ii) K(S) = D−1

J where J = [1, k] or [k, n − 1] for some 1 ≤ k ≤ n − 1, and
(iii) S is a superstandard hook.

Proof. Clearly, (ii) implies (i). The fact that (iii) implies (ii) follows directly
from the definition of a superstandard hook. The proof that (i) implies (iii) is
by contradiction. Assuming that S is either a non-superstandard hook or not
of hook shape, it is easy to find another tableau T with DesT = Des S = J , so
that K(T ) ⊆ D−1

J . Since Knuth classes are disjoint, this implies K(S) ⊂ D−1
J

which is the desired contradiction. �
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The fact that Knuth classes are i-descent consistent gives a criterion for
determining when two permutations π and σ have distinct insertion tableaux:
If iDes(π) 
= iDes(σ), then P (π) 
= P (σ). We make repeated use of this criterion
in what follows.

Another related notion needed is that of swap closure. This concept is
due to Joel Lewis [8]. For any π ∈ Sn, the operation of interchanging adjacent
elements πi and πi+1 in π where |πi − πi+1| > 1 is called a swap. We say that
two permutations are swap equivalent if one can be obtained from the other via
a sequence of swaps. A set of permutations is called swap closed if it is closed
under this equivalence relation. In what follows, we restrict our attention to
swaps involving the largest element n. As such, we define −→π to be the result
of swapping n with its right neighbor. In the case that this neighbor is n − 1
or n is the rightmost element of π, we set −→π = π. We also define

�
π to be the

permutation obtained from π by removing n from its position and placing it
on the right end of π. We define ←−π and

�
π analogously.

The relationship between swap closure and the sets D−1
J is given by the

following lemma. The following result was also obtained by Lewis but not
published [8].

Lemma 5.6. Let ∅ 
= Π ⊆ Sn. Then, Π is swap closed if and only if

Π =
s⋃

i=1

D−1
Ji

for some J1, . . . , Js ⊆ [n − 1].

Proof. We first claim that if ∅ 
= Π ⊆ D−1
J for some J ⊆ [n − 1] and Π is swap

closed, then Π = D−1
J . Let J = {j1, . . . , jk} and define

πJ := jk + 1, . . . , n, jk−1 + 1, . . . jk, . . . , j1 + 1, . . . , j2, 1, . . . , j1 ∈ D−1
J .

We claim that πJ is swap equivalent to each σ ∈ D−1
J . As iDes(σ) = J , we

have the maximal increasing subsequence 1 . . . j1 in σ. Since j1+1 is to the left
of j1, we can move the elements j1, j1 − 1, . . . , 1 in that order to the end of σ
by a sequence of swaps leaving all the other elements of σ in the same relative
positions. Repeating this process yields πJ . Thus, all the elements σ ∈ D−1

J are
swap equivalent. Since Π 
= ∅ and is a swap closed subset of D−1

J , we conclude
that Π = D−1

J .
Now, assume that Π is nonempty and swap closed. By an argument simi-

lar to the previous paragraph, for each J ⊆ [n− 1], such that Π∩D−1
J 
= ∅, we

have D−1
J ⊆ Π. The forward direction of our lemma now follows. Since swaps

interchange elements that differ by at least 2, we see that iDes is invariant
under swaps. As each D−1

Ji
is the set of all permutations with i-descent set Ji,

the reverse direction follows. �

We now wish to make a connection between pattern-Knuth closure and
swap closure. Note that the second statement of this result follows from the
first and the previous lemma.
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Theorem 5.7. If Π ⊆ Sn is both pattern-Knuth closed and i-descent consistent,
then Π is swap closed. Furthermore, when Π 
= ∅, we have Π = D−1

J for some
J ⊆ [n − 1].

To prove this theorem, we begin with some preliminaries. Given a per-
mutation π ∈ Sn, and integers 1 ≤ i ≤ n and 1 ≤ m ≤ n, we can construct a
new permutation σ by standardizing

π1, . . . , πi−1,m
+, πi, . . . , πn,

where m+ := m+1/2. For simplicity, we refer to this operation by saying that
σ is the result of adding m+ to π in position i. Of course, we may also add
m− = m−1/2 to σ where this is defined analogously. When adding an element
to a permutation, we take the standardization to be implicit. For example, if
we add 3− to π = 132 in position 3, we write 133−2 ∈ S4 instead of 1432 ∈ S4

and refer to 3− or 3 instead of 3 or 4, respectively.
We write π−m to denote the permutation obtained by deleting the value

m from π. When subtracting an element, we always refer to the elements of
π − m in their standardized form, as opposed to the convention for adding an
element. For example, if π ∈ Sn, then in π−(n−1), the element n−1 is where
n is in π. When m is the largest value, we instead write π̂ for π−n and extend
this notation to sets of permutations in the usual way. Finally, we also use this
notation in the context of standard Young tableaux. For any S ∈ SYT(n), we
define Ŝ to be the standard Young tableau obtained by deleting n from S.

Lemma 5.8. Assume that π ∈ S contain the subsequence m−3,m−1,m,m−2
for some m. Then, iDes(π − x) = iDes(π − (m − 2)) if and only if x = m − 2.

Proof. Because of the given configuration of elements, it follows that we have
m−3,m−2 /∈ iDes(π−(m−2)). If x < m−2, then we see m−3 ∈ iDes(π−x),
since m − 1 is to the left of m − 2 in π. Similarly, if x > m − 2, then m − 2 ∈
iDes(π − x), since both m − 1 and m are to the left of m − 2 in π. The lemma
now follows. �
Lemma 5.9. Let Π ⊆ Sn be pattern-Knuth closed. Assume that Π is such that
n − 1 /∈ iDes(σ) for all σ ∈ Π. Then, −→π ∈ Π for all π ∈ Π.

Proof. Fix π ∈ Π with πi = n, so that πi+1 < n. Now, add n− to π in position
i + 2 and use it to interchange n and πi+1 via a Knuth move to obtain

ρ := . . . , πi+1, n, n−, . . . ∈ Sn+1(Π).

Since all patterns in Π have length n, there exists some x, such that ρ−x ∈ Π.
If x 
= n, n−, then n − 1 ∈ iDes(ρ − x) in which case ρ − x /∈ Π. Therefore, x
is one of n, n− and −→π = ρ − x ∈ Π. �

Next, we prove a lemma to help with our inductive proofs of both Theo-
rems 5.7 and 5.13.

Lemma 5.10. Assume that Π ⊆ Sn is pattern-Knuth closed with the property
that for each π ∈ Π, we have either

�
π∈ Π or

�
π∈ Π. Then, Π̂ is pattern-Knuth

closed.
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Proof. To show that Π̂ is pattern-Knuth closed, take σ ∈ Sk(Π̂) for some k and
consider any ρ ∈ Sk Knuth-equivalent to σ with the aim of showing ρ ∈ Sk(Π̂).
In particular, assume that σ contains the pattern π̂ ∈ Π̂. Now, consider the
case when

�
π∈ Π and observe that the concatenation σ, k + 1 contains

�
π and

hence σ, k+1 ∈ Sk+1(Π). Since ρ and σ are Knuth-equivalent, we have ρ, k+1
and σ, k + 1 are too. As Π is pattern-Knuth closed ρ, k + 1 ∈ Sk+1(Π). Hence,
ρ ∈ Sk(Π̂) as needed.

The case when
�
π∈ Π follows by an analogous argument, and so, the

details are omitted. �

We are now in a position to prove Theorem 5.7.

Proof of Theorem 5.7. The second assertion follows from the first and
Lemma 5.6. The first statement of the theorem certainly holds when n = 1.
We now proceed by induction on n with Π ⊆ Sn where n > 1. By considering
Πr if necessary, we may assume n − 1 /∈ iDes(Π).

It follows from Lemma 5.9 that −→π ∈ Π for all π ∈ Π. Therefore, we can
always swap n to the right and remain in Π. Hence,

�
π∈ Π for all π ∈ Π,

since n − 1 is to the left of n in π. Therefore, we know by Lemma 5.10 that
Π̂ ⊆ Sn−1 is pattern-Knuth closed. Clearly, Π̂ is i-descent consistent, and so,
we conclude by induction that Π̂ is swap closed. This means that if we take
any

�
π∈ Π and swap elements neither of which are n, then the result is in Π.

Consequently, it now suffices to show that ←−π ∈ Π for any π ∈ Π. To this end,
fix π ∈ Π and set πi = n where πi−1 ≤ n − 2. We consider two cases.
Case 1: n − 2 /∈ iDes(Π)

In this case, n − 2, n − 1, n is a subsequence of π. Add (n − 1)− to π in
position i+1 and use it to interchange πi−1 and n via a Knuth move to obtain

ρ := . . . , n − 2, . . . , n − 1, . . . , n, πi−1, (n − 1)−, . . . ∈ Sn+1(Π).

Let x be such that ρ − x ∈ Π, so that iDes(ρ − x) = iDes(Π). Observe that
ρ− (n− 1)− = ←−π , and hence, iDes(ρ− (n− 1)−) = iDes(Π). By Lemma 5.8, it
now follows that we must have x = (n−1)− proving, in this case, that ←−π ∈ Π.
Case 2: n − 2 ∈ iDes(Π)

Add n− to π in position i − 1 and use it to interchange n and πi−1 via a
Knuth move to obtain

ρ := . . . , n − 1, . . . , n−, n, πi−1, . . . ∈ Sn+1(Π),

where n − 2 is not shown, but is to the right of n − 1. Let x be such that
ρ − x ∈ Π and iDes(ρ − x) = iDes(Π). As n − 2 ∈ iDes(Π), it follows that
x = n − 1, n−, or n. If x = n, n−, we are done as ←−π = ρ − x ∈ Π.

If x = n − 1, then n − 2 must be to the right of n in ρ, so that n − 2 ∈
iDes(ρ − x). As n and n − 2 are to the right of n− in ρ, it follows that ρ − n−

is obtainable from ρ − (n − 1) by swapping n − 1 left. Define σ = ρ − (n − 1),
so

σ = . . . , πi−2, n − 1, n, πi−1, . . . ∈ Π
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where n − 2 is not shown, but is to the right of n. It now suffices to show that
we can swap n−1 to the left an arbitrary number of times and stay in Π. Add
(n − 1)− to σ in position i − 2 and apply a Knuth move to obtain

. . . , (n − 1)−, n − 1, πi−2, n, πi−1, . . . ∈ Sn+1(Π).

As n − 2 ∈ iDes(Π), we must delete y = (n − 1)−, n − 1, or n to obtain a
pattern in Π. If y is one of the first two, we are done. If y = n, then, by the
second paragraph in this proof, we can swap n to the right once, so that we
obtain σ with n−1 and πi−2 interchanged which must still be in Π. Repeating
this argument demonstrates that we can swap n − 1 left as needed. �

In [6], the authors prove in Theorem 5.8 that K(T ) is pattern-Knuth
closed if and only if T is a superstandard hook. We are now in position to give
a more conceptual explanation as to why this theorem holds as well as place
its statement in a more general framework.

Theorem 5.11. Suppose that Π = K(S) for some S ∈ SYT(n). Then, the
following are equivalent:

(i) Π is pattern-Knuth closed,
(ii) Π is swap closed,
(iii) Π = D−1

J where J = [1, k] or J = [k, n − 1] for some k, and
(iv) S is a superstandard hook.

Proof. Our definition of Π implies that Π is i-descent consistent. The implica-
tion (i) implies (ii) follows directly from Theorem 5.7. The fact that (ii) implies
(iii) follows from the fact that Π is i-descent consistent as well as Lemmas 5.5
and 5.6. The implication (iii) implies (iv) also follows from Lemma 5.5. Finally,
the fact that (iv) implies (i) is given a straightforward explanation in the paper
of [6, Proposition 5.9]. �

We now characterize pattern-Knuth closed classes that are unions of two
Knuth classes, answering a question in [6]. We say that S 
= T ∈ SYT(n) are
an i-descent-complete pair if K(S) ∪ K(T ) = D−1

J for some J ⊆ [n − 1]. We
start by characterizing such pairs.

Lemma 5.12. Suppose that S 
= T ∈ SYT(n). Then, S and T are an i-descent-
complete pair if and only if

S =

1 2 ··· k n

k+1
...

n−1

T =

1 2 ··· k

k+1 n
...

n−1

(8)

where 2 ≤ k ≤ n − 2 and Des(S) = Des(T ) = [k, n − 2], or

S =

1 2 k ··· n

3
...

k−1

T =

1 2 k+1 ··· n

3 k
...

k−1

(9)
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where 4 ≤ k ≤ n and Des(S) = Des(T ) = [2, k − 2], or S and T are transposes
of these tableaux.

Proof. The reverse direction follows from a straightforward check. To prove
the forward direction, let J ⊆ [n − 1] be such that K(S) ∪ K(T ) = D−1

J . As
S 
= T , it follows from Lemma 5.5 that neither S nor T can be superstandard.
Furthermore, by considering reverses if necessary, we may assume 1 
∈ J , so
that 2 is in the first row of both S and T . It now suffices to show that no other
pairs of tableaux other than those displayed in (8) or (9) are i-descent-complete
pairs.

To this end, observe that the mapping between hook tableaux and sub-
sets of [n − 1] given by Des is a bijection. As K(S) ∪ K(T ) is the set of all
permutations with i-descent set J , it follows that either S or T is hook shape.
We take S to be of hook shape. In particular as S is not superstandard, its
leftmost column has length at least 2. Now, consider adjacent elements a and
b with 2 ≤ a < b in the top row of S. If b > a + 1, then b − 1 must be in
the first column of S, so that the tableau obtained by moving b into position
(2, 2) is standard and has descent set J . Likewise, consider adjacent elements
c and d with 2 ≤ c < d in the first column of S. If d > c + 1, then the tableau
obtained by moving d into position (2, 2) is standard and also has descent set
J . As there are exactly two tableaux with descent set J , we must have

S =

1 2 ··· a b ··· n

a+1

a+2
...

b−1

,

for some a ≥ 2 and a + 1 < b ≤ n. If a = 2, then this results in the second
pair in the statement of the theorem. If a ≥ 3, then we claim that b = n. For
if b ≤ n − 1, then we have at least two additional tableaux with descent set J .
Namely, we have the tableau S′ obtained by moving b into position (2, 2) and
the tableau S′′ obtained from S′ by moving b+1 into positions (2, 3) where the
fact that a ≥ 3 guarantees that S′′ is standard. When b = n, we get the first
pair of tableaux in the statement of the theorem. This completes our proof.

�

We are now ready to state our second main theorem of this section.

Theorem 5.13. Suppose that Π = K(S) ∪ K(T ) where S 
= T ∈ SYT(n). The
following are equivalent:

(i) Π is pattern-Knuth closed,
(ii) Π is swap closed,
(iii) Π = D−1

J ∪D−1
L where either J 
= L are of the form given in Lemma 5.5,

or J = L is of the form given in Lemma 5.12, and
(iv) S and T are either distinct superstandard hooks, the tableaux pairs dis-

played in Lemma 5.12, or their transposes.
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In light of Theorems 5.11 and 5.13, one would hope that pattern-Knuth
closure would, in general, be equivalent to swap closure. Unfortunately, this is
not true. For example, take: Π = K(T1) ∪ K(T2) ∪ K(T3), where

T1 = 1 2 4

3

T2 = 1 3 4

2

T3 = 1 2 3

4

.

A computer check shows that S5(Π) is a union of Knuth classes, and so, by
Lemma 6.1 below, we know that this Π is pattern-Knuth closed. On the other
hand, this Π is not swap closed as 3124 ∈ K(T1), but performing a swap gives
3142 ∈ K(T4), where

T4 = 1 2

3 4

.

We now turn to the proof Theorem 5.13. The crux of this proof is in
demonstrating that i) implies ii). We begin by building up the required lemmas
to show this implication. In what follows, we denote Knuth equivalence by ∼.

Lemma 5.14. Fix S ∈ SYT(n). The following are equivalent:
(i) there exists some π ∈ K(S) with πn = n,
(ii) K(Ŝ) = K̂(S) and n is in the top row of S, and
(iii)

�
σ∈ K(S) for all σ ∈ K(S).

Proof. Before proving any of the above implications observe that if we apply
the Robinson–Schensted algorithm to any σ ∈ Sn and keep track of only the
values < n, it is clear that P (σ̂) = P̂ (σ). Thus, in general, K̂(S) ⊆ K(Ŝ).

We now prove (i) implies (ii). By the existence of π ∈ K(S) with πn = n,
it is clear that S = P (π) has n in the top row. From the observation in the first
paragraph, to establish the equality, we need only show that K(Ŝ) ⊆ K̂(S)
and we know P (π̂) = P̂ (π) = Ŝ. Now, pick σ ∈ K(Ŝ) so that σ ∼ π̂, and
hence, σ, n ∼ π. Consequently, P (σ, n) = P (π) = S. Therefore, σ ∈ K̂(S) as
needed.

We now prove that (ii) implies (iii). By (ii), we see that for any σ ∈ K(S),
we have σ̂ ∈ K̂(S) = K(Ŝ). Therefore, P (

�
σ ) is obtained by adding n to the

end of the top row of Ŝ. As n is in the top row of S, it follows that P (
�
σ ) = S.

The fact that (iii) implies (i) is clear. �

Lemma 5.15. Fix n ≥ 1. Let S, T ∈ SYT(n) be of hook shape with the property
that Ŝ and T̂ are superstandard hooks. If Π = K(S) ∪ K(T ) is pattern-Knuth
closed, then S and T are both superstandard.

Proof. When n ≤ 3, all tableaux are superstandard, and so, the result follows
trivially. When n = 4, a computer check demonstrates the theorem. Therefore,
we may assume n ≥ 5. For a contradiction assume T is not superstandard. By
considering Πr if necessary, we may further assume n is in the top row of T
and that the row word of T is

ρ(T ) = n − 1, . . . , k + 1, 1, 2, . . . , k, n
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where 2 ≤ k ≤ n − 2. We now consider three cases.
Case 1: 2 < k < n − 2

Add (n − 1)− to ρ(T ) in position 1 to obtain

(n − 1)−, n − 1, . . . , k + 1, 1, 2, . . . , k, n ∈ Sn+1(Π).

Via Knuth moves slide n − 1 to position n − 1 and then, via another Knuth
move, interchange n and k to obtain

τ := (n − 1)−, n − 2, . . . , k + 1, 1, 2, . . . , k − 1, n − 1, n, k ∈ Sn+1(Π).

There exists some x, such that τ − x ∈ Π. Because k < n − 2, the decreasing
prefix (n − 1)−, n − 2, . . . , k + 1 has length at least 2. Now, a straightforward
check shows that if x 
= k, then P (τ − x) is not of hook shape, since k bumps
either n−1 or n into position (2, 2). When x = k, we see that P = P (τ −x) has
hook shape with top row 1, 2, . . . , k − 1, n − 1, n. The fact that 2 < k < n − 2
means that P̂ is not superstandard, and so, P 
= S, T . This contradiction shows
that the lemma holds in this case.
Case 2: k = n − 2

Here, ρ(T ) = n−1, 1, 2, . . . , n−2, n ∼ 1, 2, . . . , n−3, n−1, n, n−2. Now,
add (n − 2)+ in position n − 3 and use it to interchange n − 3 and n − 1 to
obtain

1, 2, . . . , n − 4, (n − 2)+, n − 1, n − 3, n, n − 2
∼ 1, 2, . . . , n − 4, (n − 2)+, n − 1, n, n − 3, n − 2 ∈ Sn+1(Π).

Denoting the last permutation by τ , there exists x be such that τ − x ∈ Π. If
x 
= n − 2, n − 3, then the shape of P = P (τ − x) is (n − 2, 2) which is not a
hook. If x = n − 2 or n − 3, then

P = 1 2 ... n−4n−3n−1 n

n−2

.

Since n ≥ 5, we see that the top row contains 1 and 2 and n − 1 ≥ 4 but not
n − 2. Therefore, P̂ is not superstandard, and hence, P 
= S, T . We conclude,
in this case, that the lemma holds.

Case 3: k = 2
Here, ρ(T ) = n−1, . . . , 3, 1, 2, n. Now, add (n−2)+ in position n−1 and

use it to interchange 2 and n to obtain

n − 1, . . . , 3, 1, (n − 2)+, n, 2
∼ n − 2, n − 1, n, 1, (n − 2)+, n − 3, . . . , 3, 2 ∈ Sn+1(Π).

Denoting the last permutation by τ , there must exist some x, so that τ −x ∈ Π.
Note that the first 6 terms of τ are order isomorphic to 356142 whose insertion
tableau is not of hook shape. Therefore, x must be one of the first 6 terms. If
x 
= 1, then the remaining 5 elements in τ − x insert to a tableau which is not
of hook shape. Therefore, x = 1 and τ − 1 = n − 3, n − 1, n, n − 2, n − 4, . . . , 1.
It is now easy to check that if P = P (τ − 1), then P̂ is not superstandard
and, consequently, P 
= S, T . This completes the final case and the proof of
the lemma. �
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In what follows, we denote the symmetric difference of two sets by �.

Lemma 5.16. Suppose that n ≥ 4. Let Π = K(S) ∪ K(T ) be pattern-Knuth
closed where S, T ∈ SYT(n). Assume that n − 1 /∈ Des(S) and n − 1 ∈ Des(T )
and 1 ∈ Des(S)�Des(T ). Then, there exists some π ∈ K(S) and σ ∈ K(T )
with πn = n and σ1 = n.

Proof. We first prove the existence of such a π ∈ K(S). Choose π ∈ K(S) that
maximizes i where πi = n. Towards a contradiction, assume i < n, so that
πi+1 ≤ n − 2, since n − 1 
∈ Des(S). Now, add (n − 1)− in position i and use
it to interchange n and πi+1 via a Knuth move to obtain

ρ := . . . , n − 1, . . . , (n − 1)−, πi+1, n, . . . ∈ Sn+1(Π).

Let x be such that ρ − x ∈ Π. We claim that ρ − x /∈ K(T ). For if this was to
occur, we must take x = 1 or 2, since 1 ∈ Des(S)�Des(T ). However, because
n ≥ 4, we would then have n − 1 /∈ iDes(ρ − x), whereas n − 1 ∈ Des(T ). We
conclude that ρ − x ∈ K(S).

Next observe that x 
= n as otherwise n − 1 ∈ iDes(ρ − x), whereas
n − 1 /∈ Des(S). Consequently, n sits in position i + 1 or i + 2 in ρ − x ∈ K(S)
depending on whether x is to the left or the right of n in ρ, respectively. This
contradicts our choice of π proving the first claim in this lemma.

The above argument, when applied to Πr = K(Sr) ∪ K(T r), establishes
the second claim and completes our proof. �
Proof of Theorem 5.13. We first show that (ii) implies (iii). As Π is swap
closed, Lemma 5.6 together with the fact that Knuth classes are i-descent
consistent implies that Π = D−1

J ∪ D−1
L for some J, L ⊆ [n − 1]. If J 
= L, it

further follows that K(S) = D−1
J and K(T ) = D−1

L . Hence, J, L are as given
in Lemma 5.5. If J = L, then S and T are an i-descent-complete pair and J, L
are given by Lemma 5.12. The implication that (iii) implies (iv) also follows
from these two lemmas.

Now, assume (iv) with the goal of showing (i). It follows from Lemmas 5.5
and 5.12 that Π = D−1

J ∪D−1
L for some J, L ⊆ [n−1]. As sets of the form D−1

J

are pattern-Knuth closed by Lemma 5.7 in [6], (i) follows from Proposition 5.2.
It remains to show that (i) implies (ii). Observe that when Des(S) =

Des(T ),, the result follows from Theorem 5.7. Therefore, we may assume
Des(S) 
= Des(T ). In light of Lemmas 5.5 and 5.6, it suffices to show that
S and T are superstandard hooks. We proceed by induction on n. Since all
tableaux are superstandard hooks when n ≤ 3, we take n ≥ 4.

First, assume that n − 1 is in neither Des(S) nor Des(T ). By (repeated
application of) Lemma 5.9, we have

�
π∈ Π (10)

for each π ∈ Π. By Lemma 5.10, Π̂ is pattern-Knuth closed. It also follows
from (10) that n must be in the top row of either S or T . We consider two
cases. If n is in the top row of both S and T , then it is the last element of
both ρ(S) and ρ(T ). By Lemma 5.14, see that

Π̂ = K̂(S) ∪ K̂(T ) = K(Ŝ) ∪ K(T̂ ). (11)
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By induction, we conclude that Ŝ and T̂ are superstandard hooks. As n is in
the top rows of S and T , we further see S and T are hook shape. Finally,
Lemma 5.15 implies that S and T are both superstandard hooks.

Next, assume that n is in the top row of S but not T . Set ρ = ρ̂(T ), n, so
that ρ ∈ Π by (10). Let R be the insertion tableau of ρ. Clearly, R = S or T ,
but as n is in the top row R, we conclude R = S. Additionally, notice that ρ
is the reading word for R and that R is obtained by moving n in T to the top
row of T . As n − 1 /∈ Des(T ), it follows that Des(T ) = Des(R) = Des(S). This
contradicts the fact that Des(S) 
= Des(T ), and so, we conclude that this case
cannot occur.

At this point, we may assume that n − 1 ∈ Des(S)�Des(T ) for if n − 1
is in both sets, then repeating the above argument on Πr = K(Sr) ∪ K(T r)
disposes of that case. In fact, we can assume even more. As Knuth moves
commute with complementation, we see that Πc is the union of Knuth classes
and is pattern-Knuth closed. Therefore, the above argument, when applied
to Πc, deals with the cases when 1 /∈ Des(S)�Des(T ). In what remains, we
assume that 1, n − 1 ∈ Des(S)�Des(T ).

Without loss of generality, assume n − 1 /∈ Des(S) and n − 1 ∈ Des(T ).
It now follows from Lemma 5.16 that there exists π ∈ K(S) and σ ∈ K(T ),
so that πn = n and σ1 = n. Hence, Lemma 5.14 applied to K(S) and K(T )r

tells us that for each ζ ∈ K(S) and ξ ∈ K(T ), we have
�
ζ ∈ K(S) and

�
ξ ∈ K(T )

and that Eq. (11) holds here, as well. Lemma 5.10 now gives us that Π̂ is
pattern-Knuth closed. As 1 ∈ Des(Ŝ)�Des(T̂ ), we see that Des(Ŝ) 
= Des(T̂ ),
and so, we may conclude by induction that Ŝ and T̂ are superstandard hooks.
As πn = n and σ1 = n, it follows that S and T are hook shape. Finally,
Lemma 5.15 implies that S and T are superstandard hooks as needed. �

6. Stability

In Question 7.1 in [6], the authors ask if Qn(Π) being symmetric or Schur
nonnegative for n up to some bound would force it to continue to be so for all
n. We now show the converse of this question is false by showing that Qn(Π)
can be Schur nonnegative for all sufficiently large n without being so for some
smaller value of n. In particular, we show that this is true for

Π0 = K(3, 1, 1) − K(P0), (12)

where

P0 =

1 2 4

3

5

.

We need the following result.
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Lemma 6.1. [6] The set Π is pattern-Knuth closed if and only if Sn(Π) is a
union of Knuth classes for n ≤ M + 1 where M is the maximum length of a
permutation in Π. �

We also need the following criterion.

Lemma 6.2. Given Π and Π′ nonempty sets of permutations, we let

M = max{#π | π ∈ Π ∪ Π′}
where #π is the length of π. If there is an N ≥ M , such that

SN (Π) = SN (Π′),

then:

Sn(Π) = Sn(Π′)

for all n ≥ N .

Proof. It suffices to prove that if σ ∈ Sn contains a copy of some π ∈ Π, then
σ also contains a π′ ∈ Π′ as the converse statement follows by symmetry. Since
n ≥ N ≥ M , there is a subsequence τ of σ of length N containing π. Since
SN (Π) = SN (Π′), we have that τ must also contain a copy of some π′ ∈ Π′.
Therefore, σ contains π′ and we are done. �

Now, consider K(3, 1, 1). One can check by computer that Sn(K(3, 1, 1))
is a union of Knuth classes for n ≤ 6. It follows from Lemma 6.1 that K(3, 1, 1)
is pattern-Knuth closed, so that Qn(K(3, 1, 1)) is Schur nonnegative for all n.

By contrast, using the computer again, we see that Q6(Π0) is not even
symmetric where Π0 is defined by (12). On the other hand, another computer
check shows that S7(Π0) = S7(K(3, 1, 1)). Therefore, by Lemma 6.2, we con-
clude that Sn(Π0) = Sn(K(3, 1, 1)) for n ≥ 7. It follows from the previous
paragraph that Qn(Π0) is Schur nonnegative for n ≥ 7.
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